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SUMMARY

A numerical instability is identi�ed in Navier–Stokes discretizations on meshes of high anisotropy. The
instability occurs under conditions of low Reynolds number (and in the Stokes limit) for collocated-
mesh discretizations based on physical (momentum) interpolation schemes. It is responsible for the poor
performance reported for some algebraic multigrid solvers (previously attributed to possible de�ciencies
in the solvers).
The problem may be alleviated by not employing uniformly anisotropic meshes. A graded stretc-

hing=compaction that leaves part of the domain spanned by elements of moderate aspect ratio can provide
su�cient velocity–pressure coupling to stabilize the system. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a previous series of papers [1–4], an algebraic multigrid (AMG) solver was presented
for application in the solution of Navier–Stokes problems. This provided coupled solutions
for �uid �ow and pressure, for the linear approximations associated with each Picard it-
eration of a non-linear solver. As it was a fully coupled method, no under-relaxation of
the �ow variables was necessary to assist convergence. The AMG method was based on
zero-order inter-grid transfer operators, so the algorithm was simple and e�cient in terms of
storage requirements and operation count, which of course it needed to be if it was to be
used repeatedly for Picard iterations. However, zero-order transfer operators were not entirely
satisfactory for the second-order, elliptic aspects of the Navier–Stokes equations: At least
�rst-order restriction=interpolation should strictly have been used to ensure a consistent coarse
grid approximation (CGA), and hence a full-bandwidth correction spectrum. To improve the
CGA, a simple scaling scheme was adopted which did not compromise either the storage
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1420 R. WEBSTER

requirements or the operation count. However, there remained the question as to whether
this simpli�ed approach would be su�ciently e�ective and robust when compared with the
alternative, but more costly, approach of using higher-order inter-grid transfer operators.
In the most recent paper [4], therefore, a comparison was made of the two methods, AMG0

and AMG1; AMG0 based on zero-order operators (with CGA scaling), AMG1 based on
�rst-order operators (both restriction and prolongation). The comparison focussed on low-
Reynolds-number �ows (i.e. Re¡1), a hard test for AMG0 (an easy test for AMG1). Higher
Reynolds number �ows (16Re63200) had been the subject of the earlier papers [1–3]. The
investigation also considered highly anisotropic grids that are often employed in Navier–Stokes
discretizations. Other elliptic problems were also addressed including pure di�usion, elastic
strain �elds in solids as well as inherently discrete network problems. It was found that AMG0
performed well on all problems except for viscous �ow on uniform meshes assembled using,
exclusively, elements of extreme aspect ratio where, somewhat surprisingly, both AMG0 and
AMG1 could sometimes fail, whereas neither failed for similarly distorted meshes in the
other applications. It was suggested that more complex smoothers might be required for such
coupled-�eld applications, of the kind used in geometric multigrid algorithms.
It is the purpose of the present paper to show by a combination of analysis and numerical

experiment, that the root cause of the problems encountered is a potentially unstable Navier–
Stokes discretization, due to a weakening of velocity–pressure coupling on highly anisotropic
meshes. To avoid the problem, without changing the existing element interpolation scheme and
without large investments in smoothing, it is necessary to avoid the homogeneous deployment
of large-aspect-ratio elements across the entire calculational domain.

2. DISCRETIZATION

2.1. Notation

Discrete variables will be represented by algebraic vectors which will be written in bold face
characters, e.g. x, or alternatively in the form x(j), where index j could be a nodal index, �eld
index, an element face=edge=vertex index, etc. Physical vectors will also be denoted either by
bold face letters, e.g. x, or alternatively by tensor notation, e.g. xi, where the subscript identi�es
the vector component. Where the entries in, x(j), are themselves a physical vector then x(j)
or xi(j) will be used to emphasize this. To distinguish interpolation point variables within
elements from their nodal counterparts, a superscript will be used, e.g. xe. The equivalent
system variable (for all elements) would then be written xe(e), where the integer variable,
e, is an element index. The x; y notation is used for two-dimensional Cartesian co-ordinates.

2.2. Discrete equation system

The calculational domain is subdivided into a large assembly of �nite elements (in this case
triangular). The discrete �ow variables of velocity, u(j), and pressure, p(j), are collocated at
nodes placed at element vertices. The element assembly may be unstructured, so the density
of elements can vary within the domain. The elements are designated to have a volume,
V e. Element edges=faces are designated to have an area, A(j) (Figure 1). The medians cut
elements from the centroid to face centres into three equal segments. Assigning each segment
to its vertex node forms a complete set of nodal control volumes, the median dual cells
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Figure 1. Triangular element; face area vectors A(i); nodal variables (x(i)); element variables (xe(e))
and segment surfaces Asg(i; j)= [A(i)− A(j)]=6.

Figure 2. Six triangular elements and seven median dual cell control volumes.

(Figure 2). Enforcement of the conservation laws for �uid �ow consistently for every such
nodal control volume delivers the discrete Navier–Stokes equation set for the system. Thus,
for an incompressible �uid, enforcement of momentum and mass conservation, respectively,
gives the following coupled system:

Q(u)u+ �p= s (1a)

�∗u=0 (1b)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1419–1438
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where Q(u) is the discrete advection–di�usion matrix operator, a function the nodal velocity,
u; � is the discrete nodal gradient operator; �∗ is the discrete nodal divergence operator; s
and sm represent the respective volumetric sources. The absence of pressure in (1b) precludes
the use of normal relaxation methods in solving this system iteratively. Methods such as ILU
factorization or the distributive iteration methods such as that of Brandt and Dinar [5] could
be used, but there are other problems with the system as it stands. Simple linear interpolation
on collocated meshes renders it unstable [6]. This arises because the velocity at any particular
node does not depend on the pressure at that node but only on pressure di�erences between
its adjacent neighbours, i.e. no diagonal entry in �. Similarly, any �ow imbalance for a
particular nodal control volume does not depend on the velocity at the associated node, but
only on velocity di�erences between neighbouring nodes, i.e. no diagonal entry in �∗. These
insensitivities allow chequer-board types of spatial instability. For example if M is an easily
inverted part of Q, and a splitting Q=M+N were used to derive a pressure equation from
(1a) and (1b), i.e.

(�∗M−1N)u+ (�∗M−1�)p= s′ (1c)

where s′=�∗M−1s − sm, then there will be no adjacent-neighbour couplings in the pres-
sure matrix (�∗M−1�); instead, it will take the form of two spatially separated, decou-
pled, sub-systems each consisting of next-nearest neighbours in checker-board pattern. It was
this problem which led to the development of the long established staggered-grid method of
Harlow and Welch (see, for example, Reference [6]).
However, the inconvenience of staggered meshes for local re�nement and for problems

with so-called complex geometry, has spurred the development of various alternative interpo-
lation schemes that provide the required velocity–pressure coupling to stabilize discretizations
for collocated meshes. Early schemes were the so-called momentum interpolation schemes,
somewhat similar to that originally devised by Rhie and Chow [7]. More physically consistent
schemes were devised by Prakash [8], Hookey [9] and by Schneider and Raw [10]. Deriva-
tives of the Schneider and Raw approach are, the scheme used here [1–4] and the consistent
physical interpolation (CPI) scheme of Deng et al. [11]. The interpolated velocities in the
schemes not only depend on the local nodal velocities, but also on the local nodal pressures
(as well as on any sources or sinks within the element). For the triangular elements used
here just one interpolation point at each element centroid, index e, for a single �ow velocity,
ue(e), is used for calculating �uxes within the element. The derivation of the interpolation is
described below. Replacing (1b) with the divergence of the element velocities and replacing
ue(e) by the interpolation functions (see Section 2.3 below), transforms the system to

Q(ue)u+ �p= s (2a)

Cu+ Bp= sp (2b)

where C is another form of discrete divergence operator, sp is a modi�ed source, and matrix
B, unlike (�∗Q−1�), is a Poisson-type operator with adjacent-neighbour couplings. These
derive directly from the u–p coupling of the interpolation and are directly responsible for
stabilizing the system. The form of B also enables the system to be solved iteratively using
normal relaxation methods.
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2.3. Element interpolation

A pointer to the source of the convergence problems in the previous work lay in the observa-
tion that none were encountered for other elliptic problems on similarly stretched meshes. It
was only for the Navier–Stokes applications that both AMG0 and AMG1 encountered di�-
culties. For example, for a scalar di�usion problem on a uniform mesh of elements of aspect
ratio �=256, a residual-reduction factor �= ri=ri−1∼10−7 was achieved using AMG0 with
an ILU smoother (ri−1 and ri being the residuals in successive iterations, i − 1 and i). Con-
vergence to machine accuracy could be achieved in just two multigrid F-cycles, the smoother
acting almost like a TDMA direct solver for high aspect ratio discretizations, whereas the
same solver and smoother failed (�≈ 1) when applied to the Navier–Stokes problem for the
same mesh. This prompted a re-examination of the above-mentioned interpolation used within
elements.
For the present, attention will be focussed on a single element. The derivation of the

interpolation equation uses a second enforcement of the conservation laws applied to a sub-
control volume constructed within the element. This gives the element velocity, ue(e), as a
function both of the vertex nodal velocities, u(j), and the vertex nodal pressures, p(j), as well
as on any volumetric sources or sinks of momentum internal to the element, s(e). A six sided
control cell is constructed by joining the mid-points of sides to the mid-points of median lines
joining the centroid to the vertices (Figure 3). This gives the six surfaces, ±As(i), where

±As(i)=±Asg(j; k)= ±(A(j)−A(k))
6

with a cyclic permutation of i, j, k, two surfaces for each of the three vertex segments.
Finite-volume approximations for velocity gradients in each segment, ∇ui(l), can be calculated
where

∇ui(l)= 3(A(l)[u
e
i (e)− ui(l)]− 2As(l)[ui(m)− ui(n)])

4V e

Figure 3. Element sub-control volume, bounded by control surfaces As(l)=±[A(m)− A(n)]=6
(cyclic permutation of l, m, n).
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1424 R. WEBSTER

with again cyclic permutation of l, m, n. Thus, if � is the �uid viscosity, a net di�usive �ux
component of momentum may be calculated for the control surfaces in each segment

Fi(l)=−�∇ui(l)
(
2[As(m)−As(n)]

V e

)

Substituting for ∇ui(l) and for As(l), As(m), As(n) and summing the �uxes for all three
segments gives a net di�usive �ux, FDi (e), for the element sub-control volume

FDi (e)=�
[
3uei (e)−

3∑
r=1
ui(r)

]
3∑
q=1

{
Ai(q)Ai(q)
(2V e)2

}

with the summation convention for repeated physical vector=tensor subscripts understood.
Moreover, since Ai(q)Ai(q)= |A(q)|2 and 2V e=|A(q)|=�(q), the perpendicular height of the
vertex q, the net di�usive �ux may be re-written as

FDi (e)=�
[
3uei (e)−

3∑
r=1
ui(r)

]
3∑
q=1

{
1

�2(q)

}
(3)

A similar accountancy can be performed for the advective �uxes. To this end upwind advective
�ux velocities, u±(e; q), are de�ned for the net control surface direction, a(q), in each segment
where

u±(e; q)=
[uej(e)aj(q)± |uej(e)aj(q)|]

2

and a(q)=−A(q)=|A(q)|. Thus, the upstream momentum �ux components advected in=out of
the sub-control volume will be

FAi (e)=�
3∑
q=1

{
[u−(e; q)uj(q) + u+(e; q)uei (e)]

�(q)

}
(4)

Momentum �ux due to the body force associated with pressure di�erences, FBi (e), may sim-
ilarly be calculated,

FBi (e)=
3∑
q=1

{
ai(q)p(q)
�(q)

}
(5)

The sum of these �uxes must balance any sources or sinks, si(e), within the element

FAi + F
B
i + F

D
i = si(e) (6)

Substituting (3)–(5) into (6), adopting a linearized approximation for the advection terms,
de�ning an advection coe�cient, K±(q), a di�usion coe�cient, D, an element–segment
gradient operator, gi(q), element–segment Peclet numbers, Pe±(q), and an element Peclet
number, Pe+ where

K±(q)=
�u±(e; q)
�(q)

; D=�
3∑
q=1

1
�2(q)

; gi(q)= − ai(q)
�(q)
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Pe±(q)=
K±(q)
D

and Pe+ =
3∑
q=1
Pe+(q)

and, re-arranging, the following equation can be constructed:

Qeiiu
e
i (e)= s

e
i (e) +

3∑
r=1

{[1− Pe−(r)]ui(r)}+
3∑
q=1

{gi(q)p(q)}

where Qeii=D(3 + Pe
+), with Qe an advection–di�usion, matrix for the element (diagonal in

this inertial frame). The interpolation equation is thus

uei (e)=C
ssei (e) +

3∑
q=1

{CV (q)ui(q)}+
3∑
q=1

{Cpi (q)p(q)} (7)

and the interpolation coe�cients, relating, uei (e), to the sources=sinks, s
e
i (e), and to the nodal

velocities and pressures, ui(q) and p(q), are therefore

Cs=[Qeii]
−1 =

1
D(3 + Pe+)

; CV (q)=
[1 + Pe−(q)]
(3 + Pe+)

; Cpi (q)= [Q
e
ii]

−1gi(q)

Of particular importance, therefore, in determining the strength of the u–s and the u–p cou-
pling and hence the stability of the discretization, are the element Peclet numbers and the
inverse of the element advection–di�usion operator, [Qeii]

−1.
First, consider low Peclet numbers due to low velocity, Pe± → 0 as u→ 0. The u–p cou-

pling coe�cient, Cpi (q), remains �nite, since [Q
e
ii]

−1 → (3D)−1 as Pe± → 0 and there is no
breakdown in coupling. Next, consider low Peclet numbers caused by a large di�usivity,
Pe± → 0 as D−1 → 0. Now there is a breakdown, [Qeii]

−1 → 0 as D−1 → 0, Cs → 0, Cpi (q)→ 0,
CV (q)→ 1=3, giving a simple linear interpolation, which is known to be unstable.
So the di�usion coe�cient, which is a �ow resistivity coe�cient for the element, is the

important factor. The higher the resistivity the weaker the coupling and the less stable the
system (which is counter to the stabilizing in�uence which is normally expected from a
resistivity). Now,

D−1 =�
3∑
q=1

{
1

�2(q)

}−1
=
�2

3�

where the harmonic mean height of the vertices, �, is naturally biased towards the shortest
height. Thus, the smaller the element, and the more viscous the �uid, the weaker the u–p
coupling and therefore the less stable the system. For a given �uid viscosity, moreover, the
element need only be small in one dimension in order to have a relatively high di�usivity.
This is because of the relatively large area for the transverse di�usion of momentum when an
element has a small height-to-length ratio (i.e. high aspect ratio). This situation is of course
precisely that for which the convergence problems were encountered in Reference [4].

2.4. The pressure equation

Consider now the pressure equation, obtained by enforcing continuity. Extending (7) to all
elements gives

ue=[Qe]−1se +CVu+ [Qe]−1Gp
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Qe being the diagonal, Ne ×Ne, block-diagonal advection–di�usion matrix operator for ele-
ments; CV is the system equivalent of CV (q). G is the element–node gradient operator for the
system. The nodal gradient operator, �, of (1a) is related to G, by �=−[(nvVn)−1ZVe]G,
where Z is the Nn ×Ne, element-to-node, mapping operator with non-zero entries of unity;
Vn is the diagonal, Nn ×Nn matrix of nodal volumes; Ve is the diagonal, Ne ×Ne, matrix of
element volumes and nv=3 is the number of element vertices. Enforcing the continuity of
ue (G∗ue=0) where the node–element divergence operator, G∗, is given by VnG∗=[VeG]T

gives the pressure equation (2b) enabling identi�cation of the divergence operator, C, the
Poisson-type operator, B, and the source, sp, i.e.

C=G∗CV B=G∗[Qe]−1G sp= sm −G[Qe]−1se

Consider the e�ects of extreme mesh distortion on these operators. The deformation may
be stretching, compaction or combinations of both, but it will be evident from the above
analysis that the u–p coupling, [Qe]−1, will be reduced regardless of how this deformation
is implemented. The same is not true of the spatial operators G∗ and G however where
entries in G∗G can increase with compaction and reduce with elongation. The combined
e�ects for entries in B=G∗[Qe]−1G will depend on both the type of deformation and on
the spatial separation of neighbours in relation to the principal axes of the deformation.
Nevertheless, it is readily shown that entries Bij will always be preferentially weakened, and
hence stability always preferentially compromised between those nodes, i and j, separated
in the longitudinal direction of stretch (or normal to the direction of compaction). For a
unidirectional deformation, we would thus expect to see a unidirectional zebra-stripe pattern
of destabilization. Moreover, for lateral compaction, this will be the case even when there has
been no change in the longitudinal spacing of nodes.
These �ndings, and their relevance to the reported problems in Reference [4], will be

discussed in the light of numerical experiments in Section 4. Before doing so, the solvers
used in Reference [4] are reviewed together with some modi�cations made.

3. SOLVERS AND LINEAR SOLVER MODIFICATIONS

The linear and non-linear equation solvers have been described previously [1–4]. Attention
will be focussed on modi�cations made.

3.1. Coupled-variable AMG linear solvers

3.1.1. AMG method. Both linear solvers AMG0 and AMG1 are based on the unknown
approach [12] in which each grid point represents one degree of freedom. Thus, depend-
ing on the number of coupled �elds, the grid system can be much larger than the nodal
system of the mesh.
AMG0 is based on grid transfer operators of zero order; those for AMG1 approximate �rst

order. As mentioned above, at least �rst-order operators should strictly be used to ensure a rea-
sonably consistent CGA for an elliptic equation system. To improve the CGA for AMG0 a
scaling, �, is applied in proportion to the elliptic component of the system [3], where �=(�)1=d,
with � the grid coarsening ratio and, d, the topological dimension of the grid (here d=2). In
the case of AMG1, zero-order transfer operators are smoothed (using an energy optimization
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procedure) to generate approximately �rst-order operators that should provide a better CGA.
The smoothing is damped (damping factor, !). Normally, Jacobi smoothing is adopted,
!=2=3, but heavier damping (!¡2=3) has also proved useful for highly distorted grids.

3.1.2. Coarsening algorithms. The coarsening algorithms for both AMG0 and AMG1 are
based on grid-point agglomeration. Grid points are agglomerated if the strength of coupling
between them exceeds a certain threshold, de�ned by a strong coupling parameter, �, which
in Reference [4] was grid dependent. Here it is set at �=0:08 regardless of the grid level.
Apart from this the aggregation algorithm used is otherwise identical to that given previously
for AMG0 [4], but here it is used in both AMG0 and AMG1 solvers.

3.1.3. Convergence acceleration. Recognizing that, for both AMG1 and AMG0, there may
still be modes of the error spectrum not well represented on the coarse grids, successive iter-
ations are driven with a generalized-conjugate-residual (GCR) control harness. This improves
the bandwidth of the correction spectrum and hence the convergence characteristics [3]. Each
iteration will be one GCR iteration, and this in turn may consist of one or more multigrid
cycles (just one full multigrid V-cycle in all the cases here).

3.1.4. Solution scheme. The full multigrid V-cycle (FMV) scheme is a nested recursion
of the standard V-cycle scheme, which itself is a recursion of the basic two-level scheme
(see Reference [4] for the algorithms used). The two-level scheme involves, the restriction of
residual errors from a �ne grid to a coarse grid, the e�cient determination of broad-bandwidth
corrections from these residuals on the coarse grid and the interpolation (prolongation) of
those corrections back to the �ne grid for an update of the solution. Prior to restriction, a
pre-conditioning with �1 sweeps of local relaxation (pre-smoothing) may be used. Following
interpolation, high wavenumber errors generated may be reduced with �2 sweeps of post-
smoothing. In all the calculations reported here, only post-smoothing is used, �1 = 0; �2¿0.
Note that the smoothing of errors and corrections is not to be confused with the smoothing
of transfer operators (for the establishment of the coarse grids).

3.1.5. Solution smoothing. Simple Gauss–Seidel (GS) relaxation forms the basis of the
smoothing algorithm. As multiple Gauss–Seidel relaxation sweeps will not be stable for the
system matrix of Equations (2), some form of stabilization is required. A GCR control harness
provides this. It will be referred to as GS smoothing, the stabilization being understood.

3.1.6. Solution smoothing sequence. In the previously reported work [4] (but not in
Reference [1]) �eld equations were visited somewhat randomly during smoothing. This had a
deleterious e�ect on performance and is partly responsible for some of the reported conver-
gence failures. It has been recti�ed in the current scheme where an ordering is imposed on the
visiting sequence. Firstly, there is an ordering according to the �eld identity of the equations;
�ow vector components are visited �rst, each separately, whilst the pressure equation set is
visited last, as in Reference [1]. Secondly, an option for subset ordering is introduced. In the
case of AMG1, the subsets are those �ne grid points associated with a particular coarse grid
point. In the case of AMG0, the core of a subset consists those points that are agglomerated
into a coarse grid point and to these are added the immediately adjacent �ne-grid points.
These subsets are visited in order of their �eld identity as just described, all points within a
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subset are visited before moving on to the next (the method comes under the classi�cation
of Box–Gauss–Seidel (BGS) schemes [13]).

3.1.7. Solution smoothing regime. The number of post-smoothing sweeps employed is chosen
to meet the demands of the problem being addressed. This was also the strategy used in the
previous work [4]. Here, an option to vary the number of smoothing sweeps with the grid
level has been introduced. For example, the number of sweeps for grid level, g, will be
�2 = �g, where � is the number of post-smoothing sweeps on the �nest grid. g will range from
1 to Ng − 1, where Ng is the total number of grids (a direct solver is always used on the
coarsest grid).

3.1.8. CGA complexity. Another way of driving the AMG0 solver ‘harder’ is to increase
the complexity of the CGA by increasing �. Complexity is de�ned in terms of two numbers,
grid complexity, Cg, and algebraic complexity, CA. Cg is the ratio of the total number of
equations over all grids to the number of equations on the �ne grid. Likewise, CA is the
ratio of the total number of matrix entries over all grids to the number for the �ne grid. In
the case of AMG0, CA ≈Cg, whereas in the case of AMG1, CA¿Cg due to the increased
bandwidth brought about by smoothing the inter-grid transfer operators. There is little scope
for increasing Cg in the case of AMG1; it is constrained by the need for a su�ciently large
core of points in each aggregate (i.e. su�ciently small �) to provide a meaningful, multi-
dimensional, linear interpolation. Increasing Cg is therefore only considered an option for
AMG0 (�60:5; Cg ≈CA62).

4. NUMERICAL EXPERIMENTS

4.1. Test problems

Attention is focussed on lamina pressure-driven �ow in a rectangular channel. This is a
simple problem with an easy analytic solution but which, nonetheless, proved di�cult for
the AMG0=AMG1 solvers when cast as a discrete problem on highly stretched grids. It is
therefore appropriate for this investigation and has the advantage of giving estimates for the
true errors.
The length-to-half-width ratio is 16. A solid, no-slip wall and a free slip symmetry axis

constitute the top and bottom boundaries, respectively. The left and right, inlet and outlet, are
�xed pressure boundaries. Discrete approximations are all of similar size (between 32 768 and
36 864 elements) regardless of the mesh anisotropy. On uniform meshes, therefore, elements
all have the same volume, being longitudinally stretched and laterally compacted to achieve
the required range of aspect ratio. On non-uniform meshes, the lateral compaction is graded
across the channel (low aspect ratios along the axis, high aspect ratios along the wall). Element
volumes therefore vary across the domain in these cases, decreasing towards the wall but the
total number of elements is kept within the range 32 768–35 880.
The �rst set of test cases considered is that of uniform anisotropic meshes for aspect ratios

in the range �=1 to 256, corresponding to grids from 512× 32 to 32× 512.
All calculations are for one Reynolds number, Re=0:125, based on hydraulic diameter for

channel �ow.
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4.2. The assessment of solver performance

4.2.1. Solver convergence. Since the problem is essentially linear (unidirectional lamina �ow)
there is no distinction between Navier–Stokes convergence and linear solver convergence.
A 12-order reduction in the Euclidian norm of corrections is set as a convergence target.
Normally, such a tight tolerance level would be extravagant. It is adopted here simply to
monitor performance over the entire range of possible convergence, thus ensuring that a
stalled convergence (due to potentially unstable discretizations) could not pass undetected.

4.2.2. Linear solver performance. Overall performance of the linear solver will be assessed
in terms of average reduction factors. The average reduction factor, �, for a total of nf FMV
cycles and ni non-linear iterations is taken to be

�=
1
ni

ni∑
n=1
�n where �n=

{
nf∏
f=1
�(f; n)

}1=nf

and �(f; n) =
‖r(f; n)‖2

‖r(f−1; n)‖2

with r(f; n) being the residual following the fth FMV cycle during the nth Picard iteration.
Convergence failure is here taken to be stagnated convergence (�n → 1).

4.3. Numerical results

4.3.1. AMG1 reduction factors: uniform anisotropic meshes. In Figure 4(a) the average
reduction factors, �, for AMG1 are plotted for aspect ratios, �, up to 256. Consider �rst
points without a numeral sub=superscript (�lled circles), which were obtained with just three

Figure 4. (a) AMG1: averaged, residual-reduction factors for channel �ow (Re=0:125) discretized on
uniformly anisotropic meshes; and (b) AMG0: averaged, residual-reduction factors for channel �ow

(Re=0:125) discretized on uniformly anisotropic meshes.
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post-smoothing sweeps for all grids. It will be evident that, with Jacobi-smoothed trans-
fer operators, the reduction factors for AMG1 (!=2=3; �2 = 3) deteriorate rapidly as the
aspect ratio increases and that for aspect ratios greater than 8, stagnation occurs. Note however
that convergence can be achieved with a heavier damping of the transfer-operator smooth-
ing, AMG1 (!=0:1, �2 = 3), though the reduction factors are relatively poor at the higher
anisotropy (�lled triangles). Better performance (open circles) is achieved by retaining the
Jacobi smoothing of transfer operators and increasing the solution smoothing on the coarse
grids, AMG1 (!=2=3, �2 = �g). This requirement for a larger investment in solution smooth-
ing is consistent with the �ndings of the previous work, although in that work a larger
investment was required (strict ordering according to �eld identity in the smoothing sequence
is responsible for the improvement).

4.3.2. AMG1 pressure errors: uniform anisotropic meshes. For the test problem, the pressure
solution should be linear between the prescribed inlet and outlet. It will be instructive therefore
to examine how the above convergence, or lack of convergence, is re�ected in the relative
error in pressure along the axis of the channel.
Figures 5(a) and (b) show the relative error, �p(x)=pt(0), in the calculated pressure, p(n),

compared with the theoretical pressure, pt(x), where

�p(x)
pt(0)

=
p(n)− pt(x)
pt(x=0)

This is plotted against distance, x, along the axis of the channel for the �rst �ve iterations of
the two most extreme cases of Figure 4(a) (i.e. cases �2 = 3, �=256 and �2 = 8g, �=256).
The initial error follows the single linear pro�le for non-boundary nodes marked ITER=0
(the initial pressure �eld for free nodes was zero).
Consider �rst Figure 5(a), results for AMG1 (!=2=3, �2 = 3). From the �rst iteration

onwards, it will be evident that there is indeed a splitting into two pressure solutions, as
suggested by the analysis of Section 2; they are the upper and lower bounds of the ‘wiggles’
drawn as a zigzag line. The upper bound represents the odd-row pressure sub-system, con-
taining the boundary nodes; the lower bound represents the even-row sub-system that is only
weakly coupled (via the odd-row sub-system) to the boundary nodes.
The odd-row sub-system shows a reduction in all components of the error spectrum over

the �rst four iterations. Thereafter the reductions tend to stall. There are some reductions
beyond the 5th iteration (not shown); but beyond about the 10th iteration the convergence
has completely stalled.
The even-row sub-system shows no evidence of convergent behaviour beyond the �rst

iteration. The error lies mainly in the low- and zero-wavenumber components of the spectrum,
giving a large o�set along the channel axis, ‘a constant of the integration’.
There was no evidence of any transverse oscillations within either sub-system that would

be consistent with a checker-board pattern of instability. If any existed, it was undetectable
on the background noise of the error spectrum. The amplitude of the noise was less than 7%
of the mean relative error across the channel (0.65% of the mean pressure) and the high-
wavenumber component of this was smaller by at least one order. The instability has therefore
the zebra-stripe pattern discussed in Section 2.
Clearly, for AMG1, just three post-smoothing sweeps fail to have any impact in reduc-

ing the low-wavenumber components of the error spectrum for the weakly coupled even-row
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Figure 5. (a) AMG1 (!=2=3, �2 = 3) solver. Relative error in axial pressure pro�le for chan-
nel �ow Re=0:125; mesh aspect ratio �=256; BGS post-smoothing; and (b) AMG1 (!=2=3,
�2 = 8g) solver. Relative error in axial pressure pro�le for channel �ow Re=0:125; mesh aspect

ratio �=256; BGS post-smoothing.

sub-system, and the progress for the odd-row system is stalled. However, by driving the
solver harder for the second and subsequent iterations, using additional smoother sweeps
on the coarser grids (see Section 2.3.7), there is an abrupt change to convergent behaviour
(Figure 5(b)). On the �rst iteration, just three smoothing sweeps are employed so Figures 5(a)
and (b) are identical. For the second and subsequent iterations, �2 = 8g sweeps are applied.
Observe that by the 2nd iteration there is no visible amplitude modulation of the ‘wig-
gles’, indicating that, with the exception of the zero-wavenumber component of error for the
even-row sub-system, there has been a large reduction in all components of the error spectra.
The even-row, zero-wavenumber component has actually increased slightly to give a large,
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constant-amplitude ‘wiggle’ along the channel. Note however that by the 3rd and for sub-
sequent iterations this component is also reduced signi�cantly (note changes in scale from
iteration to iteration). By the 5th iteration, the two sub-systems have errors that agree to
within 2× 10−8 of each other; any di�erence is of the same order as the variations within
each solution separately. This level of the real relative error compares with a reduction of
10−13 in the residual norm for this particular calculation.
It is concluded that the AMG1 (!=2=3, �2 = 8g) can bring both the weakly coupled and

the strongly coupled sub-systems to a common convergence. The stagnated convergence for
AMG1 (!=2=3, �2 = 3) is characterized by a failure to reduce the low=zero-wavenumber
components of the error in the weakly coupled, even-row, sub-system.

4.3.3. AMG0 reduction factors: uniform anisotropic meshes. For the AMG0 solver two val-
ues for the grid coarsening ratio, �, are used, �=0:2 (Cg and CA∼1:5) and �=0:5 (Cg and
CA∼2). Values lower than 0.2 resulted in convergence failure. Convergence factors for the
two cases are plotted against element aspect ratio in Figure 4(b).
For �=0:2, with just three smoothing sweeps on each grid, convergence is obtained in

most cases. Admittedly reduction factors are not particularly good, but they are convergent.
Breakdown occurs for aspect ratios in excess of 64.
For �=0:5, convergence is better, and robust for �6256. The reduction rate at the largest

aspect ratio may be just showing some evidence of weakening, but the di�erence between
the �(�2 = 3) rate and the �(�2 = 3g) rate is small (note that the robustness of this AMG0
(�=0:5, �2 = 3) performance is eroded if the above-mentioned strict ordering according to
�eld identity in the smoothing sequence is not respected).

4.3.4. AMG0 pressure errors: uniform anisotropic meshes. Clearly, AMG0 (�=0:5, �2 = 3)
performs better than AMG1 (!=2=3, �2 = 3) for the highly anisotropic discretizations.
Examine therefore how this better performance is re�ected in the reduction of errors in the
axial pressure distribution.
Consider �rst the results for AMG0 (�=0:5, �2 = 3), Figure 6(a). All components of the

error spectrum are reduced together, including the zero-wavenumber component (note again
changes in scale from iteration to iteration). The zero-wavenumber component for the even-
row sub-system does lag behind that of the odd-row sub-system slightly, so there are wig-
gles, but by the 4th iteration both sub-systems are close to convergence. AMG0 (�=0:5,
�2 = 3) is thus e�cient in reducing all spectral components of the pressure error for both
sub-systems.
Increasing the smoothing (Figure 6(b)) does not improve performance; if anything, it is

slightly worse insofar as the error for the even-row sub-system is still larger than that for odd-
row sub-system at the 4th iteration. However, by the 5th iteration, convergence is reached; the
error pro�le is then the same as those in Figure 6(a), AMG0 (�=0:5, �2 = 3), and Figure 5(b),
AMG1 (!=2=3, �2 = 8g), despite the di�erent paths followed in each case.

4.3.5. Comparison of AMG1 and AMG0 convergence: uniformly anisotropic meshes. Com-
pare now AMG1 and AMG0 reduction factors over the full range of anisotropy (Figures 4(a)
and (b)). For the more stable problems, of low-to-moderate aspect ratio, AMG1 (!=2=3,
�2 = 3) reduction factors are signi�cantly better than those for AMG0 (�=0:5, �2 = 3). Here,
as would be expected, the smoothed, inter-grid, transfer operators are e�ective in improving
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Figure 6. (a) AMG0 (�=0:5, �2 = 3) solver. Relative error in axial pressure pro�le for chan-
nel �ow Re=0:125; mesh aspect ratio �=256; BGS post-smoothing; and (b) AMG0 (�=0:5,
�2 = 3g) solver. Relative error in axial pressure pro�le for channel �ow Re=0:125; mesh aspect

ratio �=256; BGS post-smoothing.

the CGA. For the problems of high anisotropy, on the other hand, the reduction factors for
AMG1 (!=2=3, �2 = 8g) are no better than those for AMG0 (!=0:5, �2 = 3), if anything
slightly worse, and of course those for AMG1 (!=2=3, �2 = 3) are not convergent at all.
This suggests that the transfer-operator smoothing is less e�ective for highly stretched grids.
For high anisotropy, it would appear that AMG0 (with su�cient complexity) o�ers a more

robust performance than does AMG1.

4.3.6. AMG1 relative pressure errors: non-uniform anisotropic meshes. According to
Section 2, the decoupling of the odd and the even rows occurs because the entire calculational
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domain is covered by elements of high aspect ratio. If part of the calculational domain were
spanned by more isotropic elements, then this should provide the necessary coupling between
the two sub-systems that would inhibit destabilization. The even-row sub-system would be in
better contact with the boundary conditions and the problem better de�ned. Thus, for exam-
ple, a single line of more isotropically coupled, non-boundary, nodes spanning the channel
longitudinally, should ‘zip’ the two systems together, enhancing stability and convergence,
despite the fact that most of the domain remains uniformly covered with elements of very
high aspect ratio.
Mesh with a discontinuous change in anisotropy. To test this argument, a single line of

such nodes (less than 0.26% of the total) was laid down just inside the axial boundary,
using elements of aspect ratio �=4. All remaining elements had aspect ratio �=256, so the
average aspect ratio (253.4) was very close to the maximum. Good convergence was indeed
achieved for AMG1 (!=2=3, �2 = 3) in this case (Figure 7(a)), precisely the case which
failed previously; compare with Figure 5(a). The di�erence between odd-row and even-row
sub-systems is damped signi�cantly, being now much smaller than the mean error in each
separately, which is reduced rapidly by about seven orders in four iterations. This �nal level
of mean error is not as low as that for the original meshes because the mesh is now coarser
near the axis.
Mesh with a graded change in anisotropy. Of course a 2-order step change in mesh size

would be avoided in practice in favour of smoothly graded changes. Figure 7(b) shows AMG1
(!=2=3, �2 = 3) results for such a mesh with a smooth grading from �=4 on the axis to
�=256 at the wall, average aspect ratio of 130. As the number of transverse nodal intervals
was reduced in the grading process, the axial resolution has been doubled to maintain problem
size, hence the higher wavenumber components in the error. These are smaller than those in
Figure 7(a) and the convergence is improved slightly.

4.3.7. Comparison of AMG1 and AMG0 reduction factors: graded anisotropic meshes. Sim-
ilarly, good convergence was achieved for graded meshes right across the range of maxi-
mum aspect ratio up to 256 (Figures 8(a) and (b)), which may be compared directly with
Figures 4(a) and (b). Note again, that at high aspect ratio, the convergence factors for AMG1
(!=2=3, �2 = 3) are no better than those for AMG0 (�=0:5, �2 = 3), whereas at moderate
to low aspect ratio they are signi�cantly better. This is consistent with the above observations
for uniformly anisotropic meshes and again suggests that transfer-operator smoothing is less
e�ective in improving the CGA for highly anisotropic meshes.

4.4. Summary of principal observations and their interpretation

4.4.1. For uniform anisotropic meshes.

1. Convergence performance deteriorates with increasing anisotropy.
2. The deterioration is solver dependent and worst for AMG1 (!=2=3, �2 = 3), to the point
of stagnation for aspect ratios greater than 8.

3. The convergence di�culties are accompanied by a bifurcation of the pressure system
and an associated zebra-stripe pattern of instability in the pressure �eld.

4. Stagnated convergence is characterized by an inability to reduce the low=zero-
wavenumber components of the pressure error for the more weakly coupled of the two
pressure sub-systems.
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Figure 7. (a) Mesh with step change in anisotropy (�min = 4; �=253:4; �max = 256). Relative error
in axial pressure for channel �ow; Re=0:125. AMG1 (!=2=3, �2 = 3) solver; BGS post-smoothing;
and (b) mesh with graded change in anisotropy (�min = 4; �=130, �max = 256). Relative error in axial

pressure for channel �ow; Re=0:125. AMG1 (!=2=3, �2 = 3) solver; BGS post-smoothing.

4.4.2. For non-uniform anisotropic meshes.

1. The zebra-stripe patterns of instability are less evident: di�erences between the two sub-
systems are small compared to the levels of the relative error in both.

2. AMG0 (�=0:5, �2 = 3) convergence rates are independent of mesh anisotropy.
3. AMG1 (!=2=3, �2 = 3) convergence rates show some deterioration with increased aniso-
tropy; reduction factors degrade from levels much better than AMG0 to levels comparable
with those of AMG0 (Figures 8(a) and (b)). This is unlikely to be associated with any
destabilization of the discretization (Point 1 above). It is more likely to be due to an
erosion of the quality of the smoothed transfer operators for highly anisotropic grids.
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Figure 8. (a) AMG1 (!=2=3, �2 = 3): averaged residual-reduction factors for channel �ow
(Re=0:125) discretized on non-uniform, anisotropic, meshes; and (b) AMG0 (�=0:5,
�2 = 3): averaged, residual-reduction factors for channel �ow (Re=0:125) discretized on

non-uniform, anisotropic, meshes.

These observations are in qualitative agreement with the predictions made on the basis of
the analysis of Section 2, and as such o�er strong evidence for a causal link between the
destabilization of discretizations on anisotropic meshes and the observed poor performance of
both solvers.

5. DISCUSSION

The weakening of the velocity–pressure coupling is a direct result of the large di�usion coef-
�cient for high-aspect-ratio elements, due to the large transverse areas for the lateral di�usion
of momentum. The problem could arise, therefore, in all discretizations for collocated meshes
that rely on the so-called ‘momentum interpolation’ approach for the provision of velocity–
pressure coupling. These could include, the Rhie and Chow scheme and the various forms of
CPI schemes, such as the one used here. Convergence di�culties with a cell-centred, Rhie
and Chow method for �ows on highly stretched grids have been observed (see introductory
remarks in Reference [14]), though it is not clear if the type of instability being discussed
here is implicated.
For the cell-centred, collocated CPI scheme of Deng et al. [11], the transverse di�usion

of momentum is not treated implicitly in element interpolation. Only the longitudinal compo-
nent is implicit. Consequently, the transverse component does not contribute to the di�usion
coe�cient of the element, D, and therefore does not weaken the velocity–pressure coupling,
[Qe]−1. The scheme should thus be stable. Since, however, the transverse di�usion is treated
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explicitly as a function of nodal velocities only, the penalty will be very large positive and
negative entries in the o�-diagonal block, C, of the pressure equation. These will be larger
than the other entries in that block (and the diagonal block) by a factor ∼�2 , and this could
lead to other convergence di�culties.
In most practical applications, highly stretched=compacted elements are usually exploited in

an attempt to achieve an economic, directional, re�nement (for example to resolve boundary
layers near a wall). As such there is no real need to have a blanket deployment of such
elements over the entire domain. In view of this (and bearing in mind results for non-uniform
meshes) the type of decoupling being discussed is an avoidable problem and may therefore
be considered somewhat academic. Nevertheless, as the method is used in many commercial
codes it is a limitation of which all practitioners should be aware.

6. CONCLUSIONS

The velocity–pressure coupling that is implicit in physical interpolation schemes, and is essen-
tial for the stability of Navier–Stokes discretizations on collocated meshes, can be degraded
on severely stretched=compacted meshes.
This weakens the nodal coupling between nearest neighbours of the pressure system along

the direction of stretch (normal to the direction of compaction) allowing a destabilizing bifur-
cation into alternate, transverse, rows of next-nearest neighbour nodes, an odd-row sub-system
and an even-row sub-system. Di�erences between them are manifest as a zebra-stripe pattern
of spatial instability, with longitudinal oscillations (wiggles) in pressure.
Imposed boundary conditions may be divided between the sub-systems or, totally excluded

from one of them, so the problem will not be well de�ned and convergence di�culties can
arise.
Such a destabilization is consistent with the reported poor performance of algebraic multigrid

solvers when applied to Navier–Stokes problems discretized on highly anisotropic meshes,
which at least in part, was wrongly attributed to de�ciencies in the solvers.
The problem is inherent in the equations and will not be addressed by improving solvers.
Some solvers may, however, be more tolerant of the problem than others. For example,

the solver AMG0 (�=0:5, �2 = 3) is more tolerant than AMG1 (!=2=3, �2 = 3) for the test
problem investigated.
The problem can be alleviated by employing a graded mesh, so that the elements of more

moderate aspect ratio improve the coupling.
This type of instability could occur in other discretizations for collocated meshes.
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